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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1323

NUMERICAL SOLUTION CF TWO-DIMENSIONAL POISSON
EQUATION: THEORY AND APPLICATION TO
ELECTROSTATIC-ION-ENGINE ANALYSIS

By Vladimir Hamza and Edward A. Richley

SUMMARY

A numerical solution of the two-dimensional Poisson equation for
mixed boundary conditions is presented, and the theory and application
to an electrostatic-ion-engine analysis are discussed.

The Poisson equation is solved by a method of successive approxima-
tions. The first approximation to the space-charge density, which is
obtained from the Laplacian solution, gives rise to an over-space-charge-
limited case. The use of a suppression factor to remove this restriction
is discussed, and a method of estimating the value of this factor is
suggested.

A method of solution is developed in which the differential equation
is replaced by finite difference equations, and the properties of the re-
sulting matrix are studied. The Cyclic Chebyshev Semi-Iterative Method 1s
described, and an estimate of an optimum overrelaxation factor 1s glven.

Detailed calculations of the ion trajectories together with the
space-charge-density function are presented. Also included is the pro-
gram for an IBM 704 computer that was used for solution of a numerical
example of an ion rocket engine being tested at the Lewis Research Center.

INTRODUCTION

Of the many methods of electric propulsion currently being investi-
gated, the electrostatic ion rocket engine is one type that is receiving
considerable attention. Although the principle of operation of the ion
engine is not complex (see ref. 1), many factors that affect the perform-
ance of the engine require, and are receiving, a great deal of study.
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Two important engine-performance requirements are long operatiocnal
life and high efficiency. Directly related to these performance param-
eters is the study of ion optics. As discussed in reference Z, near-
perfect ion optics to minimize accelerator-electrode sputtering is a de-
sign feature necessary for long operational life as well as improved en-
gine efficiency. In addition, improvement in engine efficiency may be
gained by the use of ion accelerators operating with current densities
at or near the space-charge limit. In this respect, optimization of en-
gine design requires the solution of the space~-charge~flow problem, or
mathematically, the solution of the Poisson equation and the eguation of
motion.

While a few analytical solutions of the Poisson equation exist,
they are generally confined to specific geometric configurations (e.g.,
ref. 2), and the solutions are limited in scope and application. In the
ion engine, ions leave through an exhaust aperture, and hence complica-
tions arise when the known analytical solutions are applied to ion-engine
analysis. Because potential differences exist in the engine, the aper-
ture can give rise to a distortion of the potential field which, in turn,
serves to complicate the boundery conditions of the space-charge-flow
problem. Thus, a need exists for a generalized method of solution of
the Poisson equation that can be applied to lon-engine analysis and de-
sign.

The numerical method of solution of the two-dimensional Poisson
equation presented and developed herein is generally applicable to any
type of physical situation that can be described by this equation. For
the convenience of the reader and to demonstrate the application as an
ion-engine diagnostic tool, the method of solution is developed in ex-
ample form, namely, as the analysis of the steady-state space-charge-
limited flow of an ion beam in an ion engine presently being tested at
the Lewis Research Center. The solution was obtained with the aid of an
IBM 704 computer. The computer program is given in appendix C by
Carl D. Bogart.

The problem, outlined very simply, is solved in the following man-
ner. Boundsry conditions are stipulated. Finite difference equations
are established that give rise to a matrix equation, which is solved by
the Cyclic Chebyshev Semi-Iterative Method. The solution of this prcb-
lem is discussed in detail. Also discussed are methods of obtaining an
optimum estimate of the spectral radius of the matrix, determination of
ion trajectories, overestimation of the space-charge density resulting
from the Laplacian solution, and a method of obtaining rapid convergence
to the Poisson sclution. Emphasis is given to optimization of the solu-
tion from both accuracy and computer-time considerations.

This work was carried out as a part of the electrostatic rocket en-
gine research program at the NASA Lewis Research Center.



Valuable discussions with Dr. Richard S. Varga, professor of mathe-
matics at Case Institute of Technology, have added much to the mathemat-
ical rigor of the numerical analysis and are gratefully acknowledged.

STATEMENT OF PROBLEM

The example used to demonstrate the numerical method of solution of
the two-dimensional Poisson equation is the analysis of the steady-state
space-charge-limited flow of an ion beam in an ion engine. In this sec-
tion a mathematical model is established from a physical model, and the
matrix equation to be solved is developed from the finite difference

equations.

Physical Model

Figure 1 is a photograph of the lon engine from which the example
is taken. This engine is known as a closely spaced grid electrode, ion
rocket engine. The theory of engine operation and possible mission ap-
plications are discussed in detail in reference 3.

A sketch of the portion of the engine that is of immediate interest
is shown in figure 2. Ions are formed on the ion emitter, which is at a
positive potential relative to ground. The accelerator electrode is
usually at a negative potential. With the assumption that an adequate
flow of propellant is available (cesium vapor in this case), the poten-
tigl field created between the ion emitter and the accelerator electrode
gives rise to space-charge-limited flow of the ions. The potential dif-
ference between the ion emitter and the decelerator electrode acts to
control the ion-beam exhaust velocity. Also shown in figure 2 are a
section view of the interior of the engine (note the region of symmetry
and the typical ion trajectory) and a sketch of the idealized potential
distribution.

Mathematical Model

The portion of the engine considered for determination of ion tra-
jectories and for solution of the Poisson equation is taken from the re-
gion of symmetry indicated in figure 2. PFor simplicity, the portion of
the boundary formed by the ion emitter is taken to be flat in the mathe-
matical model; however, it may have any shape. Sketch (a) depicts the
mathematical model:
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The Poisson equation for the region R 1is in the form
2 1
-V (x,y) = = o(0,x%,y) (1)
o}

The region R has an external boundary T that satisfies the equation

@(D(XJY) + B %ﬂ‘ = Y1 for 1 =1,2,3,4,5, a 7‘4 B (2)

Values of o =1 and B = O correspond to Dirichlet boundary condi-
tions, while o =0 and B =1 correspond to Neumann boundary condi-
tions. (All symbols are defined in appendix A.) .

The potential-distribution function ®(x,y) and the space-charge-
density-distribution function o(®,x,y) are continuous in the region R.
The space-charge-density-distribution function p(®,x,y) is nonnegative
for positive ion flow and is not known a priori. It depends on the
pbotential-distribution function ¢, which must satisfy equation (1) and
the conditions of equation (2) on the exterior boundary I of region
R.

To begin the numerical method of solution, a discrete number of
mesh points is chosen in the region R. This overlay of mesh points is
shown in figure 3. The uniformity of mesh spacing away from the wires
is not essential but was chosen for simplicity. Finer mesh spacing
around the accelerator and decelerator wires was chosen in anticipation
of larger potential gradients in those regions. The next step consists
of replacing the differential equation (eq. (1)) by the finite differ-
ence equations.



Finite Difference Equations - Five-Point-
Formula Approximation

The Poisson equation (Cartesian coordinates) for the discrete case
is

-Vzw(x,y) = f(w)XJY) (5)
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For each of the subregions r; of the region R surrounding the point
X5,¥o Showm in sketch (b), the numerical approximation to equation (3)
is given by the five-point formula as follows:

1

1
Vo - 7 (wy + wp + Wz + wy) =7 fohz (4)

Although the derivation of the five-point-formula approximation of the
finite difference equations is standard and can be found in the litera-
ture (e.g., ref. 4), for completeness it is included in this report in
appendix B.

Equations similar to equation (4) can be written for each mesh
point surrounded by subregion Tj for i=1,2, . . ., N. The
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truncation error of this approximation is of the order h2, that is,
0(h®). The numerical approximation around the curved portions of the
external boundary TI'(i.e., accelerator or decelerator wire, etc.), as
shown in sketch (c),
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can be calculated by the Mikeladse formula (ref. 5) and is given as

e \[Pra * W) ( 5 (Mo * el sen .
e + 8 h + 8 € + B h + ¢ T 2(e +5) o

This approximation has a truncation error of 0O(h).

The numerical approximation at the interfaces between different
nets of mesh shown in figure 3 can be treated, as described in refer-
ence 6, by use of a transition band between the fine net and the coarse
net as shown in sketch (4):



~J

13

g

12

11

O
2%

7

(a)

Points 4 and & are calculated as ordinary points of the coarse net. The
difference equations for pcints 4 and €, respectively, are

1 1
W4: - Z‘ (Wl + WS + W6 + Wll) = Z f4h2
1 1 2
W6 - Z (Wz -+ W4: + W7 + Wls) = Z th

The point O 1is then obtained from the points 1, 2, 4, and 6, by rota-
tion of the network through 45°. The equation for point O is

fi +fo + £, +°f
1 1 1 2 4 6). o
Vo = 7 (wy + Wy + Wy + W) = g 7 h

The appropriate difference equation can be written as Jjust outlined,
so that each of the N mesh points of region R may be described. The
result is a set of N 1linear equations having N unknowns.



Matrix Equation

If the total number of mesh points interior to R is N, as shown
previously, N linear equations having N unknowns are obtained. If
the ordering of the mesh points is as shown in figure 3, the N equa-
tions can be written in matrix notation as the matrix equation

Av = k (5)
where W 1s a column vector consisting of the discrete potentials
V12, ., ND k 1s a column vector consisting of the discrete space-
charge-density functions fl,Z,...,N and, when applicable, the boundary

values Yl,Z,...,S‘ The resulting matrix A is an N by N real matrix
of the form

21,1 812 -0 112

“AN-1,N

“aN,N-1  °N,N

— —

and consists of the entries aj 32 which are the multiplying factors of
J

the discrete potentials. The solution of the Poisson equation (eqg. (3))
now has been reduced to the numerical sclution of equation (5). The
diagonal entries of the matrix A are positive, whereas the off-diagonal
entries are nonpositive. It can be proved that the real matrix A is
irreducibly diagonally dominant. (The proof and definitions are given
in ref. 7). This ensures that the inverse A-l >0 and, thus, that the
solution of equation (5) is unique.

Let D TDe a positive diagonal matrix such that DA 1s a matrix
with unity on its main diagonal. It can be written as

DA =I-M (6)



where I is the unit matrix and M is an N by N real matrix with

zero diagcnal entries. Furthermore, M has all its elements nonnegative,
and at least one of the sums of the absolute values in any row of M 1is
less than unity. By virtue of Gerschgorin's theorem (ref. 7), M is
convergent.

For mathematical convenience, the matrix M can be split into two
matrices Ml and M2 such that all odd-number entries depend on even-

number entries and vice versa (see fig. 3). In such a case the matrix
M can be expressed in the form

M = (7)

where M; contains all the odd-number entries and M, contains all the
even-number entries. The matrix M (eq. (7)) is ordered consistently,
and, according to reference 8, satisfies "Property (A)," which is re-
ferred to in reference 9 as a cyclic matrix of index 2. This property
is used in the discussion of the iterative procedure.

SOLUTION OF MATRIX EQUATION

The problem of solution of the Poisson equation lies within the
numerical solution of the matrix equation (eq. (5)). For the iterative
sclution, it is convenient to reduce equation (5) to an analogous matrix
equation. This may be accomplished by premultiplying equation (5) by
the matrix D, as defined in equation (6), to obtain

DAw = (I - M)w = Dk (8)

With Dk identified by the column vector g, equation (8) can be writ-
ten as

Ww=Mw +g (9)

The method of solution of the matrix equation (eq. (5)) is developed in
this section in terms of the analogous equation (eq. (92)).
Cyclic Chebyshev Semi-Iterative Method

In the previous section, it is indicated that the matrix M 1is
convergent. It is shown in reference 7 that the rate of convergence of



certain iterative processes is directly related to the spectral radius
of the matrix M denoted as p(M), which satisfies the relation

1A
A

o(M) = max|ps] <1 for 1 £1 =N

1

where p; are the eigenvalues of the matrix M. Determination of the
most efficient method of numerical solution of equation (9) requires
examination of the cyclic property of M. It is shown in reference 9
that the use of a modified Chebyshev Semi-Iterative Method is the best
choice in the cyclic case. With M 1in the form of equation (7), the
vectors w and g in equation (9) can be partitioned into odd-number
wy,8] and even-number wo,gs sets. Equation (9) can then be written
as

W1 0 Mol | W g1
= -+ (lO)
Yo My O ¥, gs

By the Chebyshev Semi-Iterative Method, the vector components can be
written as

m+1 m m-1 m-1
i o= %+1(M2E2 t g1 - ¥y ) + Wy
for mz1
m-+1 m m-1 m-1
Wy = (M)t e, - WE ) * Wy

where w 1s the relaxation factor, m 1s the iteration number and, for
the initial guess of m = O,

1 o)
Wy = Mowo + gg
and
1 o)
o= Mwy +go

The vector component equations determine the vector sequences [E?]m

and [E%Jm

m=Q

A major disadvantage in the application of the preceding equations
to machine computation is the amount of storage space required. It is
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chown in reference 10 that the proper sequence can be iteratively deter-
mined by modifying the vector component equations to the fiorms

Zm+1l 2m Zm~1 Zm-1
LS LL’2m+1(MzEz MRS TS ) ) for m =1
(11)
Zm+z _ 2m+1 _ Lem 2m
¥o U= ‘Dzm+2<M1E1 * 8 Ez) tEs for m =20

where, for m = O,

Initiation of this iterative method requires only the guess of the single
vector component E%’ and, what is more important, the method of solution
requires the use of no more computer storage space than any other itera-
tive procedure.

This method of solution is denoted in reference 10 as the Cyclic
Chebyshev Semi-Iterative Method and was used as reported herein for the
solution of equation (9). The rapid rate of convergence obtained by
this method is compared with those of other iterative methods (e.g.,
Successive Overrelaxation Method) in references 10 and 11.

The relaxation factor w 1in equation (11) is given in the form of
the Chebyshev polynomials as

i)

wl'l‘l = for izl
1
O(M”m(m)
wp =1
For actual computation (ref. 9) it is more convenient to express W 4as
1 L)
Wiy = 1 > for 1 2z 2
1 - 3 [ePmw ]
o =1 > (12)

(1)2—:

2 - p?(M) J



Spectral Radius of Matrix M

It is necessary to choose the relaxation factor @ of equation (12)
with great care in order to achieve an optimum rate of convergence of
equation (11). It is evident from equation (12) that w 1is a function
of the spectral radius p(M). The effect of estimated values of the
spectral radius o(M) on the rate of convergence of a matrix M for a
test reglon is shown in figure 4. This effect is well known for other
iterative methods (e.g., Successive Overrelaxation Method), as indicated
in reference &,

Determination of the upper and lower bounds on the spectral radius
of the N by N real, nonnegative, iteration matrix M of equation (11)
can be obtained by the "minmax" method (ref. 7), which for the ith iter-
ation is related to the following inequality:

(Mw) + (Mw) »
min =2 o(M) = max e
i ¥i i ¥i

IA

(13)

The result of the calculation of p(M) by this method is compared
in the following table:

Estimated Number of Relaxation factor
spectral radius, | iterations in test region,
o (M) lim &
m —> ©
0.985000 109 1.705678
. 988000 105 1.73z421
. 988500 80 1.737288
. 988750 54 1.739770
. 988910 54 1.741377
&.9890738 54 1. 7430389
. 990000 56 1.752746
. 991000 59 1.763883
. 992000 63 1.775824
. 993000 67 1.788726
. 994000 72 1.802808
. 995000 81 1.818389

8Calculated by formula given in eq. (13).

All values except the one calculated from equation (13) were obtained
from figure 4. t 1is apparent from the table that the number of itera-
tions required for convergence is a minimum at or near the value of
o(M) determined from equation (13). The upper and lower bounds on the
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spectral radius of the matrix M, as well as an estimate of the optimum
o to be used in equation (11), were obtained by the use of equation (13).

Solution of the matrix equation (eq. (5)) by the method of egua-
tion (11) also requires a knowledge of the space-charge-density-
distribution function £, that is, the right-hand side of equaticn (3).
The function f 1is contained within the column vectors gy and go
of eguation (11).

SPACE-CHARGE-DENSITY-DISTRIBUTION FUNCTION

As previously mentioned, the right-hand slde (RHS) of equation (1)
is not known a priori and depends on the distribution of the function ©.
For the discrete case (eq. (3)) the potential distribution is defined by
w and the RES by f. A simultaneous solution for f and w is pos-
sible by a method of successive approximation.

The solution is initiated by setting the RHS of equation (3) equal
to zero by assuming no space charge. The solution of the Laplacian po-
tential distribution is obtained from equation (11). The space-charge
free potential distribution of the Laplacian equation is then used to
compute an approximate first-order space-charge-density-distribution
function f.

The function f(w,x,y) of equation (3) is also given by the rela-
tion

1 jix
£lw,x,y) = = 3(xj§) (14)
o]

where j(x,y) 1s the current-density-distribution function and v(x,y)
the velocity function. The initial values of j{x,y) and v(x,y) can
Be calculated from the Laplacian potential distribution.

The following method i1s used to obtaln j(x,y). In general, the
ion emitter current density may not be constant over the entire emitter
surface if the potential gradient near the emitter surface is not uni-
form; however, the emitter surface can be divided into a large number of
area segments Agp (of unit width in the z-direction) so that the current
density in any one segment may be assumed constant. The ion trajectories
that constitute the boundaries for cach segment can then be calculated.
These ion trajectories may be visualized as boundaries of current tubes
that carry the total current emitted from an area segment of the ion
emitter. Each area segment AE of the emitter and the corresponding

area A(y,z) of the equipotential surface associated with the first mesh
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column are approximated as parallel planes, and the space-charge-limited
current density Is calculated from the Child-Langmuir formula (ref. 12):

. 4 2q Ad/ 2
g =5 e, Y2
E 9 O m AXZ

This space-charge-limited current density at the emitter multiplied by
the area segment of the emitter gives the total current carried by a
tube, which remains constant for a particular tube. Laminar flow is as-
sumed for the initial trajectory calculation; however, the possibility
of current tubes overlapping one another at downstream stations is con-
sidered in the space-charge-density calculation.

The current density at a given mesh point may be calculated as the
summation of the currents carried by tubes passing through the subregion

ry of the given mesh point, divided by the cross-sectional area of +the

subregion A(y,z), where z is taken as unity and y = h. The formula
for calculation of the current density at any mesh point, based on the
law of conservation of charge, can be written as

= (15)

Values of v(x,y) are readily obtainable from conservation of
energy considerations.

The initial values of the space-charge-density-distribution func-
tion f obtained from equation (14) are then iterated to obtain the
final solution of equation (3).

Ion Trajectories

The procedure used to obtain the ion trajectory is a pointwise de-
termination of the position of the trajectory throughout the region R.
This calculation is begun by assuming the ion velocity to be zero at the
lon emitter. This assumption neglects any thermal velocity the ions may
possess. The velocity at any other point in the region R can then be
obtained from conservation of energy considerations; for example, the
trajectory shown in sketch (e) and given by the equation

%mEfg(n +1) - vﬁ(nﬂ =-q [wR(n +1) - WL(n)] = -q &vR 1, (16)
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where vg(n + 1) is the velocity at station n + 1 and vy, (n) is the
velocity at station n.

1
R

)L4/—Ion trajectory
oA

(e)

Velocity components at any point at station n are known, as is the
initial position L; thus

byy, = 3L

An initial guess of the position R at station n + 1 can be made
by calculation of the tangent to the trajectory at the point L, given
as

AY§=AYL+%§)'11

The positions L, L', R, and R' are established by this first approxi-
mation. It is obvious that the position R at station n + 1 calcu-
lated by this equation could be considerably in error. Further refine-
ment in establishing the true position of R is made possible by suc-
cessive approximations employing the following procedure.



An improved value of AyR will be cobtained from the relation

VB = ayp ™t - byp, + vy(n)Atm+l + % a;n(Atml)z for mz 0
(17
where the increment of time At 1is given by
pitl o 8% X
Vx %(Vx(n) + v (gt 1))
and
(0 4 1) = ’/V}Z{(n) - Z9 ppm (18)

The average accelerations (in the y-direction) in equation (17), ob-
tained from the equation of motion, are

~mtl
—m+1 q AWWH&
By TR T (19)
MyRTT - O
and
1 1
o _g1(i1 L tgh o FZh-an
8y Tawn\ T V3 - 2h Y5 7h 1
1 1
R MR*TZR Fh- AR
TR OYe s T Ye YT o Y

The quantities yet to be determined are the potential differences
A in equation (18) and Apw  in equation (19). The potential at the

point L can be approximated as



whereas the potentials at the mesh points are those values obtained from
the Laplacian solutiocn of equation (11). 1In a similar manner the poten-
tigl at the point R' can be approximated as

h - 4y AL

WRY—'—_h_—W4+ h W6
Thus, an initial guess of the potentlal difference Ayw is given by

A}(Wo = WRI - WL

The potential differences in the x- and y-directions are more nearly ap-
proximated by the following relations

m+l _ L1 +1 +1 1
AT =g (Wg +WIT§'> -3 (WL“’R')
where
_ +1 +1
wm+l n Ay% n Ay%
R = h Wy h g
and
+1 1+l
i (00 OB &5
LTI R el B + - Wg

The convergence of this process is quite rapid and four approximations
were found sufficient to obtain accurate values for Aygy and the compo-
nents of the velocity at the station n + 1.

From examination of the mathematical model, it should be recognized
that the ion trajectories may: (l) pass directly through the region of
interest, (2) strike onc of the wires, (5) strike a boundary of symmetry,
or (4) overlap, or cross one another. The last three possibilities re-
quire special consideration.

In the event that an ion trajectory intersects a wire, the trajec-
tory is terminated and a new bounding trajectory Just grazing the wire
is determined and is used for the calculation of the current densities
beyond that point.
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A trajectory that crosses a boundary of symmetry is reflected back
into the region R by reversal of the sign of the velocity in the
y-direction. These reflected tubes together with the overlapping tubes,
if any, are included in the summation of current contributions to the
current-density calculation. The reflected tubes account for ions en-
tering the region R from adjacent regions.

Right-Hand Side of Equation (3)

From the discussion of equations (14) and (15) it is apparent that,
in order to obtain values of f (i.e., the RHS of eq. (3)), a summation
must be made of the current contributions from all tubes passing through
the subregion r;. This sum must then be divided by the product of the
cross-sectional area of the subregion ry (i.e., the mesh spacing height)
and the average velocity. This calculation is now possible with the
known ion trajectories computed by the method of the previous section.

The procedure for calculating the RHS of. equation (3) for the point
0, shown in sketech (f), is demonstrated.

X —
Ion trajectory

a ——””,a"
b——"] §

T V
c—] /

_.( N
& 8
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With the fractions of the total current defined as

_A'B
J1 = 75 Jab

&

Jo = Jye

_ CD'
Jz = CD Jed

the RHS of equation (3) is obtained:

1 [ Jd1 Y2 Iz
f0= o= + - + =
o \vp's  VRc VeD!

where the alphabetical line-segment and subscript notations are defined
in sketch (f).

Tt is of interest to analyze the RHS of equation (3) for the first
column (i.e., mesh points 12 to 22 in fig. 3). It seems reasonable to
assume that the trajectories very close to the emitter may follow a
straight line. The RHS of equation (3) for the first column can then
be written as

£~
€

e}

(20)

<lg

where Jjgp 1s obtained from the Child-Langmuir formula

e = Z§3/2
JET g % m pe

From total energy considerations

=T - Y A

If the potential along the first column is assumed almost constant
(trajectories are straight lines),

Da = AW
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and equation (20) becomes

fzy

2

H
H
Ol w>

oy

(21)

Substitution of equation (21) into equation (4), written, for example,
for mesh point 17 (see fig. 3), gives

fzy
9

1
Vi7 - 31 (Wig + wpg + wig + v1) =

Thus, when the potential distribution from the solution of the Laplacian
equation is known, a quick check of the RHS as a first approximation of

the Poisson equation at the first column can be made by division of the

potential difference between the emitter and the mesh point of the first
column by 9.

An initial value of the RHS of equation (3) from the Laplacian po-
tential distribution having been obtained, the numerical solution of the
Polsson equation in the form of equation (11) can now be accomplished.

NUMERICAL SOLUTION OF TWO-DIMENSIONAL POISSON EQUATION

As previously mentioned, the right-hand side of the Poisson equa-
tion (eq. (3)) is not known a priori; therefore, the Laplacian equation
is used to determine a first approximation of the potential distribution
in the region R. From this initial potential distribution, it has been
shown how the ion trajectories and the initial values of the RHS can be
obilalined.

It seems quite reasonable now to assume that, if the approximate RHS
values are substituted into equation (11) and the Cyclic Chebyshev Semi-
Iterative Method is used to solve the equation, a better approximation
of the potential distribution of the Poisson equation will result. Be-
fore the solution can be accomplished with the assurance that the process
will always converge to the solution of the Poisson equation, it is nec-
essary to utilize several précautionary checks.

Overestimation of Right-Hand Side of Equation (3)

It is reported in reference 13 that the potential distribution, ob-
tained from the solution of the Laplacian equation by resistance analog
methods, results in an overestimation of the initial values of the RHS;
that 1s, the initial Pcisson potential distribution in the vicinity of
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the emitter will actually be higher than the emitter potential Y, as
shown in sketch (g). Solution of the problem by numerical means resulted

Overestimated value
of RHS from Laplacian
solution

Tl — e = = e e o
o 1
«
-
Iz
[}
Js)
A Space-charge limit
Laplacian
solution
Distance -

(&)
in a similar situation. The significance of this problem to the numeri-
cal approach is that an over-space-charge-limited case occurs, and the
iterative procedure does not converge. To prevent this, the RHS of
equation (3) was multiplied by a suppression factor (SF), a number less

than unity, in order to avoid overestimation. The following questions
remain to be answered:

(1) Will this method result in convergence for any SF?
(2) If so, is there an optimum SF?
(3) Does this method give the space-charge-limited solution?
The answers to these questions were sought by means of some simple tests
and are discussed in the sections that follow.
Suppression Factor

In an effort to answer the foregoing questions, a simple rectangular
test region was established as shown in sketch (nh). The exact solution
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of the Poisson equation for this region is known from the Child-Langmuir
formula for a plane diode. The method of solution discussed herein was

programmed for an IBM 704 computer. The computer flow chart of the test
procedure first used to solve the Poisson equation for the region is as

follows:

Solve . o Cal?ulate. > Calculate RES
Laplacian eq. trajectories
)
Stop Count number
of cycles

Is the potential of the
first mesh column
larger than the poten-
tial at the emitter?

Solve
Poisson eq.,
25 iterations

Yes

Suppress RHS
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Both linear and power suppression factors were tested. Sketch (1)
shows the typical variation of the RHS values of the first column of the
test region with the number of cycles. The answer to the question posed
in the flow chart is yes in cycles 1, 3, and 5, and the RHS values were
suppressed. It is apparent from the sketch that the solution converged

I!

RHS wvalue

Number of cycles
(1)

up to and including the sixth cycle, but from that point on it diverged.
This happened whenever the value of the RHS went beyond the upper and
lower values indicated in earlier cycles (i.e., II < III < I,

ITI < IV < IITI, etc., but, VIT < VI < V).

This problem was solved when an additional check on the upper and
lower bounds determined by the previous cycles was incorporated into the
procedure. The flow chart of the modified procedure is as follows:



Teplacisgn . Calculate
RHS
- Check upper and
lower bounds
Iz the potential of the A
L. Solve

Lrot mesh column
larger than the poten-
tial at the emitter?

Poisson egq.,
2o lterations

s
Suppress RHS
= »] Calculate | Calculate
trajectories RHS
/
Sclve
Potential Potential Pcisson eq.
distribution distribution o5 iterations
/
Calculate
average
Calculate

trajectories
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With this modified procedure, convergence for any SF, in the range
0 < SF <1 could be obtained. Thus, the answer to the first question -
will this method result in convergence for any SF - is yes.

The answer to the second question - if so, is there an optimum SF -
must be analyzed from the standpoint of accuracy and executlon time. To
evaluate this problem, the test region was again used. Several runs
were conducted in which various values of SF were tested, and the re-
sults are shown in figure 5, in which the band of dispersion in percent
deviation from the exact value and the execution time are plotted as a
function of the SF for various values of both linear and power SF's.

The execution time is about equally as good for the SF's of 0.2,
0.3, 0.4, 0.5, and 0.7 (linear or power). On the other hand, from the
error plot it is apparent that power SF's of 0.2 and 0.9 and the linear
SF of 0.4 have the least deviation from the exact solution. The power
SF of 0.9 is unsatisfactory because of long execution time, and thus,
by process of elimination, the linear SF of 0.4 and the power SF of 0.2
appear to be the SF's that are closest to optimum.

In order to establish the fact that the apparent optimum SF's indi-
cated from figure 5 (0.4 linear and 0.2 power) also apply for any other
given potential difference, additional tests were conducted for poten-
tial differences of 2000, 1500, 1000, and 750 volts, and the results are
shown in figure 6. From the figure it can be seen that a linear SF of
0.4 is, in general, closer to the optimum SF for this configuration be-
cause it gave both lower percent deviation and lower execution time. It
would be guite improper, however, to generalize that the linear SF of
0.4 is the optimum SF for any configuration. The results of figures 5
and & do seem to indicate that a linear SF may be a better choice than
a power SF. This may be due to the fact that a power SF less than unity
suppresses the RHS values that are greater than unity and increases the
values that are less than unity.

Although an SF that is the best of these values tested has been
found by the process of elimination, it is not necessarily optimum in
the strict sense of the word, and the second question has not been com-
pletely answered. However, some insight into the problem was gained
from these tests, and an interesting observation was made that may aid
in clarification.

The tabulated data from which the values of the linear SF's (fig. 6)
were obtained are shown in table I; all values shown are normalized. It
is apparent that RHS values for the 2000-, 1500-, and 750-volt cases are
in direct proportion to the RHS values of the 1000-volt case; that is,
they are in direct proportion to the applied voltage. It was also noted
in the computation of the values shown in figure S5 that convergence of
the RHS to essentially the same values occurred irrespective of the value
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of the SF used. It was deduced from this comparison that, for any given
set ol potential boundary conditions, the initial value of the RHS from
the Laplacian solution may be in direct propertion to the converged RHS
values of the Poisson soclution. This observation should hold true for
the first approximation to the RHS values obtained by the Laplacian
equation, since they are also in direct proportion to the applied volt-
age. As discussed in the section Right-Hand Side of Equation (3), the
first approximation of the RHS of the first mesh column from the
Laplacian solution can be obtained by division of the potential differ-
ence between the emitter and the first column by 9. The RHS values for
the converged Poisson solution may be obtained by any linear SF, and the
optimum SF should be the ratic of these two values. The procedure can
best be explained by the following example: In the compilation of the
data of table I, the potential distribution obtained from the Laplacian
equation for the 1000-volt case was 933.33 volts in the first column;
therefore, the potential difference between the emitter and the first
column is 66.67. The first approximation to the RHS value 1s then
66.67/9 or 7.41. If during the test run the RHS value of the first
column of the Poisson equation (in this case =3.00), is obtained by any
assumed SF, then the best choice of SF for that configuration is given
by 3.00/7.41 or 0.4. This procedure is a tentative answer to the second
question.

The answer to the third question - does this method give the space-
charge-limited solution - is obvious from figures 5 and 6, in which the
error shown is the percent deviaticn from the exact values for the
space-charge-limited case.

The results for the test region show:

(1) The solution of the Poisson equation by this method is conver-
gent for any SF (0 < SF < 1).

(2) An optimum SF was not found explicitly, but a tentative method
of estimation has been demonstrated.

(3) The space-charge-limited solution was obtained by this method.

Thus, it has been demonstrated that the Cyclic Chebyshev Semi-Iterative
Method of numerical solution of the two-dimensional Poisson equation can
successfully be applied to a simple test region. Furthermore, to a
great extent it is possible to optimize both execution time and accuracy.

NUMERICAL, EXAMPLE
In order to demonstrate the method presented in this report, the

solution of the Poisson equation in the form of equation (11) was ob-
tained for the ion-engine configuration described in the section
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STATEMENT OF PROBLEM. The mathematical model is shown in detail in fig-
ure 3. An IBM 704 computer was used to solve the numerical example, and
the computer program is given in appendix C.

For programming convenience, the region R was divided into five
areas or nets (I, II, III, IV, and V) according to mesh spacings. The
boundaries (see fig. 3) were as follows: (1) the emitter (yy) at a uni-

form potential of 1000 volts, (2) the accelerator grid (v;) at a poten-
tial of -1000 volts, (3) the decelerator grid (vz) at ground potential,
(4) the boundaries of symmetry (y,) with the normel derivative equal to
zero, and (5) the downstream boundary (YS) arbitrarily chosen with the

normal derivative equal to zero. All potentials are referenced to
ground. The downstream boundary was located to the right of the decel-
erator grid at a normalized distance of 1 unit. The treatment of the
downstream boundary ¥sg is arbitrary from the mathematical viewpoint.

From consideration of an actual ion engine, various possibilities may
arise that are primarily related to the problem of neutralization of the
ion beam. For example, the ion flow could be neutralized by the addi-
tion of electrons at the downstream boundary, and then the boundary
could be specified at a glven potential. On the other hand, a more re-
alistic approach may be to assume that at the point of injection of
electrons a potential well may be formed. In that case, it would seem
reasonable to assume that, at some point in the region between the point
of injection of the electrons and the plane of the decelerator grid, the
normal derivative of the potential would be zero.

Because the conditions of neutralization are somevhat arbitrary,
the boundary for the example problem was selected with the normal deriv-
ative equal to zero. The location of the boundary 1 unit to the right
of the decelerator grid was selected from considerations given to trial
solutions of the Laplacian equation. These solutions were obtained with
the boundary located 1, 3, and 8 units from the decelerator grid. In
each case the normal derivative was practically zerc at a point 0.7 unit
to the right of the decelerator grid. Thus, for the Poisson solution,
the boundary (normel derivative of zero) was arbitrarily located 1 unit
to the right of the decelerator grid. Of course, for the analysis of a
specific ilon-engine configuration that includes a means of ion-beam
neutralization, the treatment of this boundary would require additional
consideration.

The spectral radius of the matrix M was calculated from equa-
tion (13) for each net and is shown with the relaxation factor w in
the following table:
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Net | Spectral radius, | Relaxation factor,
o(M) lim w
m — o
I 0.99135196 1.768034
IT . 99282155 1.788352
IIT .97927164 1.663131
Iv . 98276938 1.785650
Vv . 99571937 1.830798

As an initial guess for the column vector Wo 1in equation (11),
the Laplacian potential distribution throughout the region R was es-
timated from values cbtained from a semiconducting resistance paper ana-
log. A linear SF of 0.4 was then used to obtain the solution of the
Poisson equation.

The equipotentials of the solutions of the Laplacian and Poisson
equations for the region R together with typical ion trajectories are
shown in figures 7 and 8. The potential distributions through the re-
gion R (in the x-direction) along a line passing through the wires and
along a line passing through the center of the beam are shown in fig-
ure 9 f'or the Laplacian and Poisson solutions. It is interesting to
note trom figures 7 and 8 that, although the position of the "saddle-
point" equipotential is approximately the same for both the Laplacian
and Poisson soluticns, the values differ considerably. This effect,
along with similar changes, is made more apparent in figure 3. An iso-
metric view of the potential distribution of the Poisson solution is
Presented in figure 10.

The impingement currents on the accelerator and decelerator grids
were determined from examination of the ion trajectories of the Laplacian
and Polsson solutions. It should be understood that physically there is
no current flow for the case of zero space charge (i.e., the solution of
the Laplacian equation); however, these currents could be assocliated
with the number of trajectories lost because of interception by the grid
wires. The currents on the accelerator and decelerator grid were 17.8
and 12.9 percent of the emitter current, respectively, in the case of
the Laplacian solution, and 19.7 and 11.4 percent in the case of the
Poisson solution. The net beam current was thus indicated to be 69.3
percent (Laplacian) or £9.9 percent (Poisson) of the emitter current for
this model and the given boundary conditions.

The IBM 704 computer time for the Laplacian solution was 37.9 min-
utes. It was necessary to iterate 294 times to obtain convergence. The
criterion for convergence was established by a test using an error func-
tion e. The derivation and a discussion of this function are given in
reference 5, and the formula is included in appendix D. In the case
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under discussion a maximum value of e = 0.15 was used. The portion of
the program from the Laplacian solution to the final golution of the
Poisson equation took 23.3 minutes. The criterion for the convergence

of this portion of the program is given in the flow chart in the previous
section. Thus, the computer time required for the complete solution was
61.2 minutes. It is reasonable to expect that with larger and faster
equipment, such as an IBM 7090, the time could be reduced at least by &
factor of 6.

CONCLUDING REMARKS

The primary objective of the work reported hereln was to develop a
numerical method of solution of the two-dimensional Poisson equation with
mixed boundary conditions. The problem was approached by replacing the
Poisson differential equation by finite difference equations. The region
for which a solution was sought was overlayed with a closely spaced mesh,
and the finite difference equation was written for each mesh point. The
result was a matrix equation consisting of N linear equations having
N unknowns. The Cyclic Chebyshev Semi-Iterative Method was applied to
solve the matrix equation on an IBM 704 computer. An initial guess of
the right-hand side values of the Poisson equation based on the Laplacian
solution alone resulted in overestimation of the right-hand side which,
in turn, led to a "blowup" and no solution. This problem was solved by
application of a suppression-factor technique to the values of the right-
hand side and by use of a check on the upper and lower bounds established
from previous cycles.

The method presented herein is general for any type of external
boundary satisfying equation (2). Great care was taken to optimize the
method and thus minimize the computer time. The numerical example pre-
sented is for a configuration that required on the order of 1500 mesh
points, but analyses for configurations with twice or even three times
as many mesh points are anticipated. For such configurations the com-
puter time will be considerably greater than that mentioned for the nu-
merical example. Thus, selection of the optimum iterative method to-
gether with the optimum relaxation factor is paramount.

In the opinion of the authors, the principle advantages of this
method in contrast with other experimental analog methods are speed,
flexibility, and accuracy.

The complexity of analysis of the space-charge flow in an ion
rocket engine made the application of the method of solution seem a
natural one. From this viewpoint, the method presented herein may find
use as a tool for diagnostic purposes by those working in this area.
With this method, it should be possible to check the ion optics for
practically any specified ion-accelerator geometry for which the two-
dimensional analysis would be adequate.
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A distribution function that will satisfy the Boltzmann and Poisson
equations simultaneously is being sought sc that it will be possible to
consider particle interactions (i.e., ions, electrons, and neutrals)
that can occur in an ion rocket engine. Neutral particles may be present
because of inefficiencies in the ionization process. ZElectrons may be
present as a result of ion interceptions on the accelerators. In addi-
tion, there is a possibility that the accelerator may be heated (a re-
sult of radiant heat exchange with the ion emitter) sufficiently to give
rise to the emission of electrons.

The case of less-than-space-charge-limited flow is of interesit, and
future plans include attention to this problem.

The present computer program is being recompiled for solution on an
IBM 7090. The increased storage capacity and speed of this model will
eliminate the necessity of partitioning the region R of the numerical
example, and thus, will speed up the solution considerably. It is an-
ticipated that the execution time of a problem that satisfies the bound-
ary conditions typified by the numerical example will be reduced to
about 10 minutes. Then in a matter of a few hours it will be possible
to analyze a configuration of this type with several variations in the
specified potentials.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, June 14, 1962



APPENDIX A
SYMBOLS
A matrix of matrix equation (eq. (5)), area, sqm
AL matrix, inverse of matrix A
a average acceleration, m/sec2
ai,j entries of matrix A
C coefficient of Chebyshev polynomials
D matrix, multiplier of matrix A
d, perimeter in sketch (j), appendix B
e error function
f space~charge-density-distribution function for discrete case,
V/sq m
g column vector, Dk
51’2 column vectors, odd and even, respectively
h mesh spacing, m
I unit matrix
J current, amp
J current density, amp/sq m
k column vector of matrix equation (eq. (5))
3L line segment from point 3 to point L in sketch (e)
M real matrix with zero diagonal entries
ﬁ real matrix with zero diagonal entries (test region)

My 5 matrix consisting of odd and even entries of M, respectively

m particle mass, kg

31
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outward normal, station number

unit charge, coulombs

region

subregion of R

time, sec

velocity, m/sec

average velocity, m/sec
potential-distribution function for discrete case, v
column vector of matrix equation (eq. (5))
column vectors, odd and even, respectively
normalized distance (table I)

Cartesian coordinates

integers (1 or 0)

external boundary of R

increment

Laplacian operator

discrete portion of external boundary
incremental distance, m

fraction taken in y-direction of current tube passing through
subregion r; at station n

permittivity of free space, coulombs/(v)(m)

eigenvalue

space-charge-density-distribution function for continuous case,
coulombs/cu m

spectral radius of matrix M
estimated spectral radius of matrix ﬁ, fig. 4

potential-distribution function for continuous case, v



w relaxation factor

o relaxation factor for test region
Subscripts:

E emitter

1,3 number, 1,2,...,N

k number, 1,2,...,n

L,L' left position

m number of iteration

N number of mesh point

n number of ion trajectory
o mesh point

R,R' right position

X,y direction
Superscripts:
m number of iteration

0 initial guess

33
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APPENDIX B

DERIVATION OF FINITE DIFFERENCE EQUATIONS

Reference 4 gives the following derivation for the finite difference
equations. For the subregion r; of region R, surrounding the point
Xo,¥o (sketeh (j)), the two-dimensional Poisson equation in x,y-
coordinates is

-VPw(x,y) = £(w,x,y) (B1)

[l
hll/ dw/dn
(1115
I
| !
Y |
e | b
(:_ z — — O
Xo = R2uYo ]I' ForYo | Xo + Ng,¥5
R
| ds |
e —
dO
h3/2
L)
X5,¥0 ~ D3
(3)

From the integration of equation (Bl) over the rectangle ry, it follows

that
- fjr-l Vew(x,y)dx dy = f‘ll“l f(w,x,y)dx dy (B2)
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By Green's theorem, the term on the left-hand side of equation (B2) can
be reduced to a line integral about the perimeter d, of the rectangle
r;, and the equation (B2) can be written as

9§ ?.%gﬁlds ff £(w,x,y)dx dy (B3)
dg o1

where Ow(x,y)/dn is the derivative in the direction of the outward nor-
mal to dg. The line integration 1s performed in the counterclockwise
manner, as indicated by the arrows in sketch (3).

In order to obtain a five-point-formula approximation, the following
numerical approximations to the integrals of equation (B3) are made. The
function f(w,x,y) is assumed to be constant for the region, and there-
fore the right-hand side of equation (B3) becomes

// f(w,x,y)dx dy = f, /f dx dy (B4)
i ri

The normal derivatives of the left-hand side of equation (B3) are approx-
imated by the central difference formula, that is,

ow <x EL):u w(Xg,¥o + hii - w(xy,¥,) (55)

for the y-direction shown in sketch (j). Substitution of the preceding
approximations into equation (B3) and integration give the five-point
formule, which can be written as

ho + hy hy + hz
- <__§HZ__ W(Xo,yo + hl) + __EEE—— W(XO - hz,yo)

h2 + h4 h3 + hl
\ T w(xg,¥o - hz) + o, w(xg + hy,¥g)

hz + h4 hl + hS h2 + h4 h3 + hl
*\TEy Y T " T enz T T am w(x5,¥0)

hl + hS h2 + h4
=< = >< 5 )fo (B6)
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Now if the points in sketch (j) are identified as

Wo = W(Xo)yO)

= g, + )
vy = w(x, - h2,¥5)
w3 = w(xg,y, - hs)

Wy = w(xg + hy,y,)

and if uniform mesh spacings (h = hy = hy = hz = h4) are used, equa-
tion (B6) becomes

£ ne (B7)

N

1
Vo - (wq + wp + Wz o+ owy) =
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APPENDIX C

IBM 704 ION-ENGINE FORTRAN CODE AND BLOCK DIAGRAM
By Carl D. Bogart

Because of the storage limitations of the IBM 704 computer, the ion
engine code was divided into four logical elements (core loads) by use
of the "ping-pong" feature, whereby a core load is stored on tape as an
open subroutine until it is needed. The core loads were as follows:

Core losd Subroutine
I Data input and calculation
of eigenvalues
1T Solution of matrix equation
ITT Calculation of trajectories
and RHS
Iv Upper and lower bound check

on RES and modification,
if necessary

A schematic representation of the Fortran program appears next,
followed by a symbol list, a flow chart of the control of the program,
and a complete Fortran listing with the data for a sample case.

Conditional |2
Conditional iterative
Start > Data »| eigenvalue s{solution of
input calculation Laplacian
and exit equation
Calculation
Conditional of trajec- Conditional |
exit - tories and [ exit B
RHS
Conditional Tterative
modification »{solution of
of RHS Poisson
equation

®Same program as Poisson solution with RHS equal to zero.



Symbols

Control words

ICAL

JOT

NBLOC

NDA

NDB

NPIT

NTJ

initially to change NUL for Poisson; later as switch to indicate
end of problem

number of lines of trajectories to be printed out
positive, all print-outs occur negative or zero, no print-outs
cycle counter

positive, test RHS upper bound; negative, test RHS lower bound;
zero, no test

initial distance between ion trajectories
number of regions

positive, intermediate print-out of RHS; negative or zero, no
print-out of intermediate RHS

if used with eigenvalue calculations: positive indicates input
matrix is from dump for restart, negative or zero, matrix will
be calculated; if not used with eigenvalue calculation and
equal to 120: 1nitial guess for potential field will print
out, otherwise not used

number of heading cards to be read in and printed out
number of IA's to be read in
number of LB's to be read in

initially number of LC's to be read in; later frequency of poten-
tial field printed out during iteration

negative, eigenvalues to be calculated; zero, potential input is
from resistance paper; positive, potential input is from dump
for restart

negative, print out maximum change in potential field every
iteration; zero, print out potential field and maximum change
in potential field every iteration; positive, print-out will
not occur each iteration

number of cycles

number of trajectories



NTP

NUL
Problem
A

De

DCC

EPS

JT

KT

LB
LC

LD

SIZE
VA

VAT

VBT
Ve

XM

39

number of KT's or XT's plus eight

number of iterations on matrix equation
specifications

atomic number

distance from emitter to accelerator grid

distance from accelerator grid to decelerator grid
convergence test for matrix equation

mesh size

vector of type numbers

vector of relative subscripts

transfer vector for boundary points

14 per region, which describes matrix calculation
five per region, which controls trajectory calculation
four per region, which controls equipotential calculation
suppression factor

condition for equipotential

emitter potential

condition for equipotential

accelerator potential

condition for equipotential

decelerator potential

charge-to-mass ratio

vector of weighting coefficients

permittivity of free space
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ION ENGINE FORTRAN ZUDE

C MAIN CORE 1-DATA INPUT

99

40

36

10

1
2
3

1
2

COMMON UsRHoJT o KT o XTyLByLAJXRyXEPsNUL s XMP,VA,VByVCsH,DC,DCC,
NDB o XW oy NPIT o NBLOCy YEP y XQMy A, RX g JUTyNBHyNLC oy NJS,NRDyNDAJNAJ,
CUsAY pAXoDXyDELY ¢ VY o VX g BHyLD ¢y NTIJNRLKRLyCHUPCHLWsMO, ICAL
LCyEPSykBy VAT, VBT, SIZLsRHUP4RHDOWN

DIMENSION U(1600)sRHIL1600),JTIS10)XKTIL150)4XT(150),LB(98),LA(8BS),

XRET) o XEP(CT) yXMP{T) o XW{T7),KB{L13),LC(35),CU(24),AY(22),
VX(22),VY{22),L01(28)

DIMENSION VAT (7),veT(7),S12E(7)

READ INPUT TAPE 74101l sNHeJUTyNLCoNBHyNJSsNRDyNDAZNTJU¢NRL,,ICAL

DO 99 J=1,NH

READ INPUT TAPE 7,100

wR1TE QUTPUT TAPE 6,100

READ INPUT TAPE T,101yNUL NBLOCSNPIT,NUB,NLByNLASNTP NT,NL,IVY

REAU INPUT TAPL 7,101l,(LB(J)sJ=14NLB)

READ INPUT TAPE T,10l,{LA(J)yJ=1sNLA)

READ INPUT TAPE 7,101,(LDtJ),J=1,28)

REAU INPUT TAPE T,101,(LCEJ)J=1,NLC)

READ INPUT TAPE T,104,YEP,XQMyA,RX

00 40 JuL=1,N8BLU

READ INPUT TAPE T7,103,VAT(JL),VBT(JL),SIZE(JL)

KRL = NRL

MO = 1

XJM = XQM/A

DO 2 J=9,NTP,5

K = J+4

READ INPUT TAPE T4 1024 (KT M) M2 oK)y {XT(M) MxJ,K)

READ INPUT TAPE T7,103,VA,VvB,VLyHyEPS,DC,0CC

DO 36 J=1,510

JT(J) = 0

REWIND 3

READ INPUT TAPE 7,101,JA,48,4C

[F(JA) 3,4,3

DO 5 J=1,J4C

READ INPUT TAPE 7,101 +KA (KB(K)eK=1,413)

KC =1

D0 6 K=1|KA

JD = KB(KC)

[F(JD) 646,17

JE = KB(KC+1)

DO 9 L=1,J4D

JB = JB+1l

JT(JdB) = JE

KC = KC+2

0 TO 10

KC = 1

CONTINUE

WRITE TAPE 3,J4T
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GO 10 1
4 REWIND 3
IFINPIT) S51,21,22
51 CALL EVC
GO Tu 33
21 CALL VLAD
G0 Tu 29
22 CALL BCREAD(U(1600),Ull))
29 TF{NUB-120) 33,34,33
34 J8 = 1
DO 200 JL=1,NBLOC
JOB = LB(JB+2)-LB(JB+])
WRITE QUTPUT TAPE 6,300,JDB,JL
KS = LB(JR+])
KH LB(JB+2)
J =1
03 201 K=KG4KH
XT{J) = U(K)
JULJ) = K-LB(JB)
J = J+l
Ju = JDB-1
IF (J-9) 201,231,231
231 WRITE QUTPUT TAPE 60301y (JT(M)yMxl,8)y{(XT(M),Mx1,8)
J =1
IF (JDB) 200,200,201
201 CONTINUE
IF (J=-2) 200,2354235
235 DU 236 K=2Je8
JI{K) = 0
236 XTI(K) = 0.
WRITE OUTPUT TAPE 64301 ,{JT(M),M=x]1,8),(XT(M) ,M=]1,8)
200 JB = JB+l4
33 READ INPUT TAPC 7,103,(XR(J),J=14NBLOC)
WRITE DRUM 2,2,U
DO 35 JL=1,NBLOC
READ INPUT TAPE T7,103,XNyXM
35 XMP(JL) = 2./7((XNee2+XMea2 )/ (XNeXM}na2)
READ INPUT TAPE 7,1014NPIT4NLC
READ INPUT TAPE 7,10L1,(KB{J)ed=1,13)
DO 98 J=1,1600
98 RH{J)=0.
20 CALL PINGI(O)
100 FORMAT(T2H

101 FORMAT(1415)

102 FURMAT(514,5F10.5)

103 FORMAT(TF10.5)

104 FURMAT(7E10.5)

300 FORMAT(LIH [5,30H INITIAL INPUT FOR U IN REGION [2)
301 FORMAT(1H B814,8Fl1,.4)
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C EIGENVALUE CALCULATION
SUBROUTINE EVC
COMMON U'RH.JT,KT.XT.LB.LA.XR.XEP.NUL,XHP.VA.VB.VC.HvDC.DCC.

1 NDB.XH.NP[T.NBLDC.YEP'XQH.A.RX,JDT.NBH.NLC.NJS.NRD'NDA,NAJ,
2 CU.AY.AX.DX.DELY'VY.VX.BH.LD.NTJ.NRL'KRL.CHUP.CHLH.MUolCAL'
3 LC,EPS,KB¢VAT,VBT,S1ZEsRHUP,RHDOWN

DIMENSION U(lbOO).RH(lbOOI.JT(SlOlpKT(150).XT(ISOI.LB(QB).LA(BS)o
1 XR(7).XEP(7).XMP(7);XH(7).KB(13);LC(35).CU(24).AY(ZZ)v
2 VX{22),VY{22),L0(28)

DIMENSION VAT(T),VBT{T),SILELT)
OIMENSION UB(510)
Jg =1
DO 96 JL=1,NBLUC
READ TAPE 3,47
NEVCT = NEVLT+l
IF [MM) 30,99,30
99 READ INPUT TAPE 7,97)MM,NLEV,NUEV,NUDB
WR1TE QUTPUT TAPE 6997y MMy NLEV o NUEV ,NUDB
30 IFINEVCT-NLEV) B7,31,31
31 IF(NEVCT-NUEV) 98,98,87
98 N = NOB
JREG = JREG+)
WRITE OUTPUT TAPE 6+169JREGINeJ

KG = LB(JB+1)-LB(JIB)
KH = LB(JB+2)-1B(JB)
KJ = KG-1

JsS = -1

IFIN) 51451,52
51 DO 3 JO = KGyKH
IF(JT(JD=-1)}) 1ls1l,12
11 utJo-1) = 0.
GO TO 3
12 Uu(JD-1) = 1.
3 CONTINUE
JE = O
GO 1o 13
52 CALL BCREAD (U(KH}, UIKJ))
JE = N
13 DO 24 KK=1,MM
JE = JE+l
DO 2 JO = KGeKH
RH (JD-1) = 0.
KE = JTUJD-1)
IF(KE) 24246

6 KU = KTIKE)+JD-1
KD = KT(KE+1l)+KU
KL = KTIKE+#2)¢KU
KR = KT(KE+3) ¢+ KU

RH({JD-1) = XT(KE)OU(KU)OXT(KEOI)'U(KD)*XT(KE*Z)OU(KL)OXT(KE03)0
l U({KR]}
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45
43

44

14
24

95
15

87
96

16
41
42
97

CONTINUE

IF{JS) 45,44,44

D0 43 K=KJ¢KH

UBI(K) = UI(K)

UIK) = RHIK)

GO TO 24

xL = 0.

XS = 1.

00 4 JDO=KGyKH

IF (U(JD-1)) 4,4,5

X = RH{JD-1)/7UBLJID-1)
IF(XL-X) 7,8,8

XL = X

NL = JO-1

IFIXS-X) 4,64,9

XS = X

NS = JD-1

CONTINuUE

WRITE QUTPUT TAPE 6141 9y JE XSy XLsNS,NL
YL = RH{NL)

DO 14 J4D=KG.KH

UtJD-1) = RHIJD~-1)/YL
IF{XL-XS-1.,0E-7) 15,15,24
JS = -J§

IF(NUDB) 95,15,95

WRITE OQUTPUT TAPE 61424 (U(J) J2KJ,KH)

CALL BCOUMP (U(KH) ,U(KJ))
GO TO 96
JREG = JUREGe1
Jd = JBeles
RETURN
FURMAT {20H EV CAL REGION 315)
FURMAT(20H LOwW HIGH 15,2F13.8,5HK 216)

FURAMAT ( 2H , 22F5.3)
FORMAT (415)

C READ IN INITIAL U VALUES

10

100
101

SUBROUTINE VLAD

COMMON U'RH.JT.KT.XT.LB.LA.XR.XEP.NUL.XNP.VA.VB.VC.H-DC.DCC.

1 NDH.XH.NP[Y.NBLOC.VEP.XQH.A.RX.JDT.NBH.NLC.NJS.NRD.NDA.NAJ.
2 CU.AY.AX.DX.DELY.VY.VX.BH,LD.NTJ.NRL.KRL,CHUP.CHLH.MO.ICAL,
3 LCyEPS KB VAT, VBT, SIZE,RHUP,RHDUWN

DIMENSION UllbOO).RH(lbOOI.Jl(SlO).Kf(lSO)pXT(lSO).LBl98).LA(BS)v

i XRI7).XEP(7).KMP(T).XH(7):KBIlB)yLC(35)'CU(26).AY(22)9
2 VX(22),VY(22),LD128)

DIMENSION VAT(T),VBT(7),S12C(T)

Ja = 1

00 10 JL=1,NBLOC

READ INPUT TAPE 7,100,NC,NR
READ INPUT TAPE T7,101,{RHIK),K=1,NC)
KL = 1+LB(JBeS)eLB(JB)

KR = NR+LB(JB+5)+LB(JB)

00 9 I=1,NC

03 8 J=KL,KR

UlJ) = RH(T)

KL = KL+NR

KR = KR+NR

JB = JBe+les

RETURN

FORMAT(1415)

FORMATI(7F10.5)



C MAIN CORE 2-SOLUTION OF MATRIX EQUATIOUN
COMMON U RHyJT ¢KTpXToLBsLA XKy XEPNUL XMP,VA,VB,VC,yHsDC,DCC,

31

43

40

1
2
3

1
2

45

NDB o XW o NPT T yNBLOC,, YEP s XUMg Ay RX ¢ JOT ¢ NBH,NLC o NJS»NRDyNDA, NAJ,
CU»AY 4 AXyOX¢DELY s VY 4 VXybHy LDyNTJyNRLKRLyCHUP,CHLW, MO, 1CAL,

LCsEPS, KBy VAT, VBT, SILEyRHUP» RHDUWN

DIMENSION UL1600),RHIL1600)4JTI510),KT(150),XT(150),LB(3I8),LA(BS),

XR{T)4XEPLT) o XMPLT) o Xw{T7),KB(13),LCL35),CUI24)4AY(22]),
VX122),VY(22),L0128)
DIMENSION VAT(T),VBTIT)  SELLELT)

caLl TIMELLT)
IF(NPIT) 31,31,32
NS = 0

CH = 0.

KPR = O

READ DRUM 2424V
™ =T

D0 30 NL=1.,4UL
Jg = 1

KWL = NL

REWIND 3

DO 20 JL=L1,NBLOC
KA = LBlJB)

READ TAPE 3,JT1
K5 = LB(JB+])

KH = LB(JB+2)
XEPLJL) = 0.

XM = ,25¢XR(JL)ee2
TFINS) 241,42

DO 4 JDO=KGyKH,42
KF = JO-KA

KE = JTIKF-1)
IF(KE) 4o%03

KU = KT(KE)+JC-1
KD = KT{KE+l)+KU
KL = KT(KE#2)+KU
KR = KT(KE+3)+KU

oLD = utJD-1I

UGJD-1) = XT{KEe4) ®RHIJID-1) ¢ XT{KE}oU{KU}¢XTIKE+L1)oUIKD)+XTIKE+2)®

UIKL)+XT{KE+3)eU(KR)
DIF = ABSF{U(JD-1)-0LD)
IF(XEP(JL)=DIF) 40,4,4

XtPtJyL) = DIF
LC(JL+30}=J0-1
CONTINUE

XWlJL) = 2./12.-6.8XM)

G0 TO 13

XWwldL) = le/(le=XMaXa(JL)]}

DO 6 JD=KGyKH,2
KF JDO-KA-1
KE JT{KF)
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60

13

90

22

26

25

217

24

IF(KE) 6¢6,7

KU = KT(KE)¢#J4D~-1

KD = KT{(KE+l)+¢KU

KL = KT(KE#2)¢KU

KR = KT(KE+3)+KU

TUDO = XT(KE*4)oRH(JD-1)¢XTIKE)QU(KU)+XT(KE+L)oU(KD)+XT(KE+2)oU(KL)
+XTIKE+3)eU{KR)

OLD = UlJD-1)

UlGJD=1) = XWlJL)e(TUO-U(JD-1))+U(JD-1)

DIF = ABSF(U(JD-1)-0LD)

IF{XEP(JIL)-DIF) 609646

XEP(JL) = DIF

LC{JL+30) = J4D~-1

CONTINUE

XWlJL) = la/(1l.-XMeXW{JL))

DO 9 JO=KG¢KH,2

KF = JD-KA

KE = JT(KF)

IF(KE) 9,9,8

KU = KT(JE)+JD

KD = KT(KE¢l)eKU

KL = KT(KE+2)+KU

KR = KT(KE+3)eKU

TUD = XTIKE+4)oRH(JD)I*+XTIKE)SUIKU)+XTIKE+*L)oU(KD)+XT(KE+2)oUIKL)+
XT(KE+¢3)aU(KR)

OLD = UtJD)

UtJD) = XWiJL)Y={(TUO-U(JD))¢ULJID)

DIF = ABSF(U(JD)-0LD)

IF(XEP(JIL)-DIF) 90,9,9

XEP({JL) = DIF

LC(JL+30) = JD

CONTINUE

KG = KH+ll

KH = LB(JB+4&)

IFIKH) 21421,22

D0 25 JO=KG,KH

KF = JD-KA

KE = -JT(KF)

IFIKE) 25,2526

KU = KT(KE)+JD

KD = KT{KE+1)+KU

KL = KTIKE+2)+KU

KR = KT(KE+3)+KU

UGJD) s XT(KE*4)sRHIJD)¢XT(KE)SUIKU) +XT(KE*L)sUIKD)I+XT(KE*2)ol
(KL)+XTIKE#+3)®U{KR)

CONTINUE

Kl = LB8(JB+3)

KA = LA(KI)

IFIKA) 5,5,24

J0 = LA(KI+1)
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30
50
41
44

4“2

32

lOOlFORHATlle TIME TO EXECUTE l4,14H U ITERATIONS= F6.2,9H MINUTES
.,

JE = LA(KI+2)
JF = LA(KI+3)
JG = LA(KI+4)

DO 12 J=l.KA
utJo) = utJe)

JO = JD+JF
Je = JE+JG
Kl = Kl+5
GO Tu 27
CUNTINUE
JB = JBela
NS = 1

CALL TWOOUT(KPR,KAL)
CALL CHK{CH KWL}
[F{CH) 30,30,50
CONTINUE

IF(UL22)=-VA) 42,4]1,41
DO 44 J=1,1600
RH{J)I=RH(J)eRX
RHUP=RH(12)

KADD = Kwl+KADD

GUO TO 31

CALL TEST(CH KAL)
caLL TIMELLT)

T™M = T-TM

KWL = KWL¢KADD

WRITE OUTPUT TAPE 64100,Knl,TM
CALL PINGIO)

47
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C CON

201

200

VERGENCE TEST
SUBROUTINE CHK(CH,KWL)

COMMON U.RH.JT.KT.XT.LB.LA.XR.XEP.NUL.XHP.VA.VB.VC.H.DC'OCC.
NDB.XH.NPIT.NBLDC.VEP.XQH.A.RX.JOT.NBH.NLC,NJS.NRD.NDA.NAJ.
CUoAY.AX.DX.DELY.VY.VX'BH.LD.NYJ.NRL.KRL.CHUP.CHLH'HD.ICAL.
LCoEPSy KBy VAT, VBT SI2E+RHUP,RHDOWN

OIMENSION U(lbOO)pRHllbOOl-JT(510).KT(lSO)oXY(150).LB(98)-LA(85).

XR(T).XEP(?).XHP(T).XH(T’.KB(l3)pLC(35).CU(24).AY(22)-
VX(22),VY(22),LD(28)

DIMENSION VAT(T7),VBT(7),SIZE(T)

IF{SENSE SWITCH 6) 201,200

CALL BCDUMP{U(1600),U(1))

NRD = 0

CALL TWOOUT(KPR,KWL)

WRITE OUTPUT TAPE 6,100

PRINT 103

PAUSE 17777

GO TO 202

XCON = XEP(l)exMP({])

00 1 JL=2,NBLOC

IF EXCON=-XEP(JL) eXMP(JL)) 2,41,1

W N e

N >

2 XCON = XEP{JL)eXMP(JL)

202
100
101
102
103

C TES

12
13

11

10
103
104

CONTINUE

If {(XCON-EPS) 3,3,4

CH = 1.

JEX = KWL-NPIT

WRITE OUTPUT TAPE 6,102,JEX

WRITE OUTPUT TAPE 6,101,EPS,XCUN

RE TURN

CONTINUE

FORMAT(16H DUMPED BY SSW6. )

FORMAT( 20H CONVERGENCE FACTOR= FB.649H EPSILON= FB8.6)
FORMAT(16H CONVERGED IN U 13)

FORMAT(S1H BUGART PROBLEM DUMPED,RAISE SSW& AND PRESS START. )

T ON CYCLES AND PRINT-0UT

SUBROUTINE TEST (CH,KWL)

COMMON UpRHoJT.KT.xt.LapL‘.l“.KEP.NUL'X"PpVAuVB'VC'HQDCQOCCQ

1 NOB!XH'NPI7'NBLOC'VEP.XQH.A.RX'Jor.NBH.NLC'NJS.NRDuND"NAJQ
2 CU'AYQAX'OX'DELV|VY'VXQBH.LD'NTJpNRL.KRL.CHUPpCHL“.HO.lc‘L.
3 LCIEPS¢KB, VAT, VBT, SIZE,RHUP, RHDOWN

DIMENSION u(lbOOl.RHtlbOO).Jt(SlO).KT(lSO).le150)-L8(98)0LA(85)-
l XR(7).XEP(7)'XHP(').XH(7’0KB‘13)!LC‘35’vCU(2“’9‘Y(22’!
2 VX{22),vY(22),LD(28)

DIMENSION VAT(T7),VBT(T7),SIZE(T)

CALL BCOUMP (U{1600),Ull))

NUL = [CAL

IWRL = NRL-KRL+XABSF({MO)

IF(KB{IWRL)) L1ly11,13

KPR = NLC

CALL TWOOUT(KPR,KWL)

CALL EQLINE

WRITE QUTPUT TAPE 6,103,IWRL,U(12)

IFCICAL) 4,2,2

IF{XKRL) 3,4,4

WRITE DRUM 2,2,U

RETURN

WRITE OUTPUT TAPE 7,104

CALLPONG(1)

FORMAT(BHOR LOOP 1243H U= Fll.4)

FORMAT(L1H NEXT CASE. )
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C PRINT-OUT OF POTENTIAL FIELD

31

29
41
35
36
40

13

1
2
3

1
2

SUBROUTINE TWOOUT{(KPR,KWL)

COMMON U'RH.JI'KI'XT'LB'LA'Xﬂ'XEPpNULpXHPQVA|VBlVCpH'DCvDCC'
NDB.XH.NPIT'NBLOC.YEP'XQHpAoRX.JDT.NBH.NLC.NJS.NRD.NDA.NAJ.
CU,AV.AX.DX'DELYoVYvVX.BH.LD,NTJ.NRL.KRL'CHUP.CHLN.MD.ICAL'
LC+EPS KB, VAT, VBT,S12C,RHUP,RHDOWN

DIMENSION U(lbOO).RH(IbOO)oJTlSlO).KT(150)0XT(150)0L3(98)nLA(85)v

XRI7]QXEP(7)oXHP(’).XH(7)'K8l13)uLC(35|vCU(24).AY(22|9
vX(22),vY(22),LD(28)

DIMENSION VAT(7),VBT{T),SIZE(T)

JEX = KWL-NPIT

IF(KPR-NCL) lé4,l,1

IF(NRD) 1,1413

WRITE QUTPUT TAPE 6,100,JEX

JB = 1

DO & JL=Ll,NBLOC

KT(JL) = LC(JL*30)-LB(IB)

JB = JB+l4

XT(JL) = XMPUJL)e®XEP(JL)

wWRITE OUTPUT TAPE 69102, (KTIM) o XT(M}yM=1,NBLOC)

IF(NRD® {KPR=-NLC)) 13,2,13

Jg = 1

IF{MO) 746,7

DU 40 JL=1,NBLOC

JDB = LB(JB+2)-LB(JB+]1)

WRITE QUTPUT TAPE 6,104,J0ByJL

J =1

KH = LB{JB+2)

KG = LB(JB+L)

DO 29 K=KG,KH

KT(J) = K-LB(JB)

XT(J) = U(K)

J = Jel

Jos = JoB-1

IFLJ-9) 29,31,31

WRITE OUTPUT TAPE 6,103, (KT(M) M=1,8),(XT{M),M=1,8)

J =1

IF(JDB)4L 441,29

CONTINUE

IF(J-2) 40,35,35

DO 36 K=J,8

KT(K) = O

XTI(K) = 0.

WRITE QUTPUT TAPE 6,103, (KTIM) M=LyB) o (XT(M),M=1,8)

JB = JjBelé

KPR = O

KPR = KPR+l

RE TURN

READ DRUM 2,2+RH

00 140 JL=1,NBLOC
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JUB = Lts{JB+2)-LBluBel)
wRITE UUTPUT TAPE 6,104,408, JL

J =1

Ko = LulJBe]l)

kR = LB{JB¢2)

U 129 K=KG4KH

Klty) = K=LBLJIY)

XTLJ) = .Se(U(K)+RHIK))
J = J+l

Jus = JDB-1
IF(J-9) 129,131,131
131 wRITE OUTPUT TAPE 6,103, IKT{M)4M21,8),(XT{M),M=1,8)
J = 1
IFEJUB) 141,161,129
129 CONTINUE
141l IF(J-2) 140,135,135
135 DU 136 K=J,8
KT{K)=0
136 xT (K} = Q,
wrRITE UUTPUT TAPE 69103, (KT{M)4M=],8),(XT(M),M=1,8)
140 U = JBela
DO 150 J=1,160
150 UlJ)=oSe(ULJ)eRHIJ))

JOT = 200
IcaL = -99
GO T 13

100 FORMAT(L13H U ITERATION 13)

101 FORMAT(1H SF12.6)

102 FORMATI{IH 7(15,F12.6))

103 FORMAT(8I5,8F11.4)

104 FURMAT(1IH 13,214 U VALUES FROM REGION 12)



C PRINT-UUT UF EQUIPUTENTIAL LINLS

201
61

19
lé

25

27

26

28

30
41

40

1
2
3

1
2

CLJMMUN U.RH.JT.KI’.xT.Lb.LA.XR.XLPg\IUL.XMP'VA'VB.VC.H'()CcDCCo

SUBROUTINE EQLINE

51

NDB.XH.NPIT.NBLUC.YtP.XUM'A.RX.JOT.NBH.NLC'NJS.NRD.NDA.NAJ.
CU'AY.AX.DXpOELY.VY|VX.BH'LOgNtJ.NRL|KKL.CHUP'CHLH.H0'[CALI

XROT) G XEPIT) o XMPUT) o Xw (7} ,KBI13),LC(35),CU(24),AY(22),

LC.EPS.KB.VAT.VBT.Sllt.RHUP.RHDDHN
DIMENSION U(lbOO)'RH(lOOO)er(ilO)'KTl150)QXT(150’.LB(98’.LA(85).
VX{22),vY(22),L0(28)
CIMENSION VAT{Z7),vBT(T),SILELT)
I = -13
Jo = 1
DO 10 JL=1,NBLUC
I = [B+lé
POTEN = VAT(JL)
JE = LD(JB)Y+LB(IB)
JO = LD(JB+l)-1
JC = LDUJDB+2)
DX = LD(JB+I)
DX = DXeH
BX = 0.
JED = JE+JO
L 1
IF(JL-1) 9,9,8
AX = 0.
DO 7 JJ=1,JC
KS =1
AY = 0.
00 6 K=JE,JED
IFIKS) 444,3
M 1l
J = K-LD(JB+l)
GO 10 19
J K-1

IE({U(K)-POTEN)#{U(J)-POTEN)) 1641642

DIF

= ABSF(UlJ)-ULK]}]

IF(DIF) 26,26,25

IF(M) 2T7,28,27

VX(L) = ABSF(U(J)-POTEN)/DIFeDX*AX
vY(L) = AY

60

TOo 30

vX(L) = AXeDX
vY(L) = AY

GO

o 30

vXiL) = AXeDX
VY(L) = ABSF(U{J)}~POTEN)/DIFeDX#AY
IF{L=-7) 40,41,41

WRITE OQUTPUT TAPE 64100,POTEN,LVXIT),¥VY(I),y1=1,7)

L
L

0
L+l
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32

31

11

12

51

50

10

100

AY = AY+DX
CONTINUE

IFIKS) 31,31,32
KS = 0

M =20

JE = JE+1
GO TO 33
JE = JE+JD

JED = JE+JD

BX = BX+DX
AX=AX+DX
CUNTINUL

[F{L-2) 51,111,111
DI 12 J=L,7

vx (4} = 0.

vy (J) = 0.

WRITE OUTPUT TAPE 64100POTEN,(VXLT)oVY(TI)yI=1,7)
PUTEN = POTEN-SIZE(JL)

IF(PUTEN-VBT(JL))
AX = AX-BX

LJ TO 61

JB = JB+4

Re TurRN

10,50,50

FOLMAT (L 7HOPOTENTIAL (Xx,Y)

Fel,2H

T{2H (FS5.3,1HsF5.3,2H)

))
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C MAIN CURE 3-CONTAINS TRAJECTORY CALCULATION AND CALLS RHS CALCULATION
CUMMON U'RH.JT.KT.XT.Lb.LA.KK,XEP.VUL.XMP.VA.VB'VC.H.OC.DCC'

1\ NDB,XH.NPIT.NHLUC'YEP,XQM.A.RX.JUT.NBH.NLC.NJS'NRD.NDA.NAJ'
2 CU.AV.AX.DX.DELV.VY'VX.GH.LD.NTJ,NRL,KRL,CHUP.CHLH.MO.ICAL.
3 LC+EPSKBy VAT, VBT SIZt RHUPyRHDUWN

DIMENSION UL1600) pRH(1600) 3JT(510),KT{150),XT{150),LB{98),LA(85),
1 XRIUT) S XEP(T) yXMPLT)  XW(T)KB(L3),LC{35),CUL24),AY(22),
2 VX122),VY(22),L0{28)

DIMENSION VAT(7),VvBT(T7),SI12E(T)
CALL TIMELLT)
™ = T
WRITE DRUM 3,3,RH
BH=NBH
BH=BHeH
XK = (4./9.)8YEPeSQRTF(2.#XQM)
ANS = 0.
JDA = NDA
NPIT = O
NAJ = NTJ+l
Jg =1
00 3 JL=1,NBLOC
IFLJL=1) 5454

S AX = 0.
vy (1)
AYL(]1)
vX(l)
(010 B TN
AY(J)

O.
BHe, S
0.00001
2,NTJ
BHeAY (J-1)
vX{J) 0.00001
9 vYLJ) 0.
NOT = 30T

LC(ya)
HeDELY
OXx = LCIJA+4])
HeDX
LCLJA+L)
LC(JA+2)
DX/YEP
LC{JA+])
XD = .S5#XQOM/DELY
[FeJL=-1) l14,14,81
B1 LF(LCIJA-5)-LI(JA)) B2,1l4,82
62 SI‘\ = 10
14 1FLAX) 20,20,21
20 X = XKeBH/(DXwa2)

SUMUNE = 0.

DO 22 K=1,.NAJ

M = Je+(K=-1)/2

wh
X
[T}
wonoe—~0o
L]

[
a g
LI T | I [ TR 1)



MH = JEe®K/2
Y = Ull)=.50tUiM)euiMA))
CUIK) = XosYeSQRTF(Y)
22 SUMUNE = SUMONE+CUI(K)
WRITE OQUTPUT TAPE 6,107,(CUINN)NN=L1,NAJ)
21 DO 10 JUN=1,J4C
JEC = JEeJD-1
IF(SW) 17,46,17
46 AX = AX+DX
DO 11 K=l,4NTJ
lFlAY(K)+l.) 83,11,83

83 AD = AY(K)/DELY

JX = AD

XA = JX

XA = AD-XxA

JP = UX+JE

JS = NJS

JO = JP-JD

UL = (1.~XA)oU(JQ)+XA0U{JQ*])
UR = (le=XA)oULJP)¢+XAsU(JP+])

DUX = UR-UL
YA = XA®VY(K)/VX(K)
[F{Jx) 216,216,218
216 YA = 2.eXDe(XAn(U(JQ+1)=-U(J))sYAR{U(JP+L)-U(JIP)))
GO Tu le6
218 YA = XOo(2.¢XAaU(JQ)-(XA+.5)2U(JQ+1)+(.5-XA)oU(JQ~-1)+2.8YARU(JP)
I-(YA+,5)eU(JP+L) ¢ (.5-YA)ep(JP-1))
YA = -YA
16 vXb = SURTF(VX(K)#e2-2,exuMeDux)

OV = 2.,9DX/7(VXutvVX(K))
DY = DTelvY(K)}-.52YAsDT)/DLLY
JS = JS-1
IF(DY) 833,836,833

834 YA = 0.
Gu T0 901

B33 Xb = XA+DY

Bl8 US = (le-XBlopylJu) eXBeU{JU+l)
Ud = (lo=XB)eoU(JP)+XxBaU(JP+])

DUX = .5e(UR-UL-US+UJ)
YA = XU (US-UL+UQ-UR)/DY
901 IF (JS) 15415416
15 VXIK) = SQRTFIVX(K)ea2-2, 0xQMaDUX)
VY{K) = VY{K)-YA=DT
AY(K) = AY(K)+DYeDELY
300 IF(.5-AY(K)) 94,94,93
93 IF(AYIK)) 91,91,11
94 AYIK) = l.-AYI(K)
GO TO 95
91 AVI(K} = —-AY(K)
95 VYI(K) = =VY(K)



11 CONTINUE
CALL CORRCT{(JL)
IF((AX-,075-DC)e(AX+.1 ~ DC)) 60647
6 SUMTAWO = 0.
DO 84 K=1,NAJ
B4 SUMTWAD = SUMTWO#ABSF(CUIK)}
GO TO 87
7 IF((AX-.0T75-DC~-DCC)Ie(AX+. ] -DC~-DCCY) 86,86,87
8% SUMTRI = O.
DO 105 K=1,NAJ
105 SUMTRI = SUMTRI®ABSF(CU(K))
87 IFI(NOUT) 17,17,18
18 NOT = NOUT-1
WRITE OUTPUT TAPE 6-19.NOT.AX.(K,AY(K).VX(K).VV(K).K=1,NTJ)
17 DO 23 J=JE,JED
23 RH{J) = O.
SW = 0.
CALL CALR(Jt,JED)
DD 44 K=JE,JLD
44 RH(K) = RHIK)}eRM
IF(JDA) 10,1044l
41 JDA = JDA-1
wRITE OUTPUT TAPL b.«B.JE.JED.AX.(RHlL).L=JE.JED)
10 JE = JE+JD
{FILB(JB+6)) &B,48,150
150 J = LB(JB+6)#LB(JB)
KG = LB(JBeT)¢LB(IB)
KH = LB(JB¢8)+LB(IB)
DD 47 K=KGKH
RHIK) = L1250 (RH(JI+RH(J# LI +RHLJ+1L)¢RH(J+12))
47 J= Jel
IF(LB(JB+9)) 48,4B,151
151 J = LB{JB+9)+LB(UB)
KG = LB(JB+10)eLBLJB)
KH = LBlJB+11)+LBLIB)
DU 51 K=KG,KH
RHIK) = +1258 (RH{J)+RHIJ*LI+RH(J+1LI+RHIJI+12))
S1L J = J+i
48 JA = JA+S
3 JB = Jpe+le
J01=0
NDA=Q
Iw = NRL-KRL*1
IFIKB{IW)) 110,110,111
111 AR=20.%H
Ul =SUMONE /AR
wRITE DUTPUT TAPE 6,100,UL
Rl = SUMTWO/SUMUONE®*100.
WrRITE QUTPUT TAPE 6,101.ERIL
Ul = SUMTWO/AR
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llu

401
400
19
43
100
101

102
103

104
106
107

WwWRITE JUTPUT TArL 6,102,U1

£/1 = SUMTRI/SUMONE®L100.

WRITE UUTPUT TaPL 6,103,tR1

Ul = SUNMTRI/ZAR

n<ETL QUTPUT TAPE 6,104,u1

CAaLL TIMELLT)

IM = T-TM

Wl TE OQUTPUT TAPE 6,106,TM

IF{ICAL) 400,401,401

CALL PINGI(O)

CALL POUNGI1)

FOKMAT (I5,1PEL15.5,(10H Y VX VY [5,3E15.5))
FORMAT(215,1PELS5.3//(TELS.4))

FORMAT (18 HO INITIAL CURRENT=EL2.6,6H AMPS,)
FURMAT{24HOCURRENT AT ACCEL. GKRID= F6.2,28H PERCENT OF INITIAL

ICURRENT. )

FORMAT (24HOCURRENT AT ACCEL. GRID= E12.6,6H AMPS.)
FORMAT(24HOCURKENT AT DECEL. GRID= F6.2,28H PERCENT OF INITIAL

1CURRENT, )

FORMAT{24HOCURRENT AT DECEL. GRID= EL12.6,6H AMPS,)
FURMAT(30HOTIME TO CALCULATE TRAJ. $ RMH= FS5.2,9H MINUTES. }
FORMAT(LH TEl%.5)



C CALCULATION UF RHS
SUBKOUTINE CALRIKE,KED)
COMMUN U.RH.JT.K[,Xl.LH.LA.XK.X&P.NUL.XMP.VA'VB.VC.H,DC.DCC,

1 NUH.XH.MPIT.NBLUC.YtP.XUH.A.RX.JOT.NBH'NLC.NJS.NRD.NDA.VAJ.
2 CU,AY,AK.DK.UtLY.VV.VX.BH.LD'NTJ.NRL.KRL;CHUP.CHL“.HU.ICALo
3 LC EPS KBy VAT, vBT, STZE s RHUP, RHDUWN

UIMENSTUN U(lbOO).&H(lbOO)-JT(SIO).KT(150)'XTIISOlpLUl98)oLA(BD)v
1 X&(7).XEP(7),XMP(T).XH(7).KB|13).LC(35).CU(24)'AY(223.

VX(22)9vYI(22),L0(28)
DIMeNSION VAT (/) ,,veT(2),50LElT)

JL = KC
JEUD = KED
SwA = G.

IF{AX=-.%) 300,301,301
300 OuU 3u2 J=l,NAaJ
3u2 CulJd) = ABSF(ZUlJ))
301 DQ 24 J=1,NAJ

IF1J-1) 25,425,426
25 IHICULL)) 24,2449
90 HT = 2.*AY(J)

XH = -AY(J)

JX = AY(J)/DELY

NA = Jt

NB = JX+JE

WA = SURTFIVX{L)en2evY(l)ee2)
B = WA

YL = AY{l)

GU TU 27

26 LF(J-NAJ) 28,294+24
29 LFICUINAJ)) 88,24,89

B89 HT = 2.&(.5-AY(NTJ))
XH = AY(NTJ)
YL = XH+HT
JX = AY(INTJ)ZDELY
NA = JX+JE
NG = JED
WA = SURTF{IX{iTJ)ee2¢VY(NTJ)ee2)
ntt = mA
Gu Ty 27

28 1F(CUlJ)) 34,24435
35 HT = AY(J)-AaY(J-1)
[F(nr) 120,120,121

120 HT = -nT
X4 = ayY(Jd)
JX = AY(JY/DELY
NB = AY{J-1)/DELY+1.
Wh = SURTF{VX(J)ee2evY(J)uea2)
We = SQRTFIVX(J-1l)ew2+evY({y-1)en2)

L) T 122
121 XH = AY(J-1)
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122

34
124

127

128

123

125

126

83

JX
WA
L]
NB
NA
N8
YL
GO
IF(
HT
NA
IF(
XH
YL
Jx
NB
LT}
wB

SwWA

GU
SwWA
XH
Yi
JX
NB
[]-)
WA
GO
HT
N8
IF(
SWA
XH
YL
JX
NA
WA
w3
GO
SmA
XH=
YL=
JK=
NA=
WA=
WH =
GJ
HT
AH
YL

AY{J-1)/DELY
SURTFIVX(J-1)ea2eVvY(J~1)ea?2)
SURTFIVXIJ)ea2evY(y)me2)
AY(J)/DELY+].

JX+JE

N8+ JE

XH+HT

1o 27

VY{J-1)) 123,123,124

= AY{J)+AY(J-1)

= JE

SWA) 127,127,128

=AY (J-1)

AY(J)

YL/DELY+1.

JX+JE
SURTFIVX(J-1)ew24eyY(J-1)en2)
SQRTFIVXIJ )ee2evyY(J )ee2)
= 1.

10 27

= 0.

-AY{J)

AY(J-1)

YL/DELY+],

JX+JE
SURTFIVX(J-1)ee2+vy(J=-1)ee2)
= SURTFIVX(J D)ee2evY(J )ee2)
T0 27

= le=AY{J)-AY(J-1)
= JED
SWA) 125.125,126
= l.
= AY(J)
= l.~AY(J-1)
= AY(J)/DELY
= JX+JE
= SURTFIVX(J Jee24vY() )wa2)

SGRTFIVX(J-1)ew2eVYlJ-L)ea2)
Tu 27

=0

AY(J-1)

l.-AY(J)

AY{J4-1)/0X

JX+JE
SURTFIVXIJd-L)en2evyY{J-1)en?)
SURTFIVXIJ Dee2+vyY{J jae?)
Ty 27

2.%(5¢AY(NTY))

-AY{NTJ)

XH+HT



27
32

33
40

37

200
201

205
204
203
202

30
129
303

24

309

HA = Jt

NB = JED

mA = SURTFIVXINTY) #e2¢VY{NTJ)ne2)
WH = WA

DU 30 K=NA\Nb

XA = K-JE

[F(XA) 32,32,3)
XUD = -.5eDELY

Ju = J-1

Lu Ty 40

XUU = (XA-.5)eDELY
XX = XUD+DELY

YU = MAXL1F(XUU4XH)
YD = MINLF(XX,YL)

IFLYD-YU) 30,30,37

XA = ,5e¢(YD¢YU)

IFLCUlJ)Y) 200,24,201

cutd) = -Cutd)

W = WA*(XA-XR)e(WB-WA)/HT

IF(K-JED) 204,205,205

Ju = NAJ-J

IF(JU) 202,202,203

W = «S5eN

KHIK ) = RHIK ) +{YD-YU)eCULJ)}/ (HTeW)
Ju = 0

IF{SwA) 24,4129,34

[H{JDA) 24,424,303

WiITE OUTPUT TAPE bp309pJ'N‘p‘B'(RH(L,iLs“AtNB)
CONTINUE

RE TURN

FORMAT(IH 315//(1PLOELL.3))}

59
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C CORRECTIUN OF TRAJECTORIES AT LRIDS

166

112
92
11
87
B4

105
106

107

o7
143

13y
139
172
lle

86
131

133
165

16¢

161l

1
2
3

1
2

SUBRUUTINE CORRCT(JL)

CUMMUN U,RH'JT.KT.XT'LB'LApXR'XEPpNUL.XMPyVAgVB'VCprDC'DCC'
NDleﬂ'NPlT’NHLUCp YtP.XUM.A,RX.JOT.NBH.NLC.NJS.NRD.NDA.NAJ.
CU.AY'AX'UXpDhLY.VY.VX.bH.LD'NTJpNRL.KRL'CHUV|CHLd'HU'ICAL'
LCIEPS KBy VAT VBT STZE,RHUP , RHDUWN

DIMENSION U(lbOO)'RH(lBOO)'JI(blO)vKr(150)|XT(150).LB(98)vLA(85)|

XR(7)'XEP(7).XMP[’,'XH(7),KB(13’pLC(35).CU(24),AY(22'.
VX(22),vY122),L0(28)

DIMENSION VAT (7)), ,VBT(T),SIZELT)

L o= nTyu-1

DU 111 KK=1,L

K = KK

IFLAY(K)#1o) 112,111,112

AYD = AY(K+¢l)-AaY(K)

[F(JL-2) 138,817,115

IF(JL-4) 138,116,138

IF(.00390625-(AX-DC)ee2-AY(K)wn2) 138,138,84

AY(K) = SQRTF(.00390625-(AX-D()es2)

Cutk) = 0.

IFLAY{K)-AY(K+]1)) 107,106,106

AY(K) = -1.

Culk) = 0.

G Tu 111

AYDL = AY(K+1l)-AY{K)

CUlK+l) = CUIK#+1)#AYDL/AYD

AYUS = AYD-AYDL

VYIKY = (VYIK)®AYDL+VY{K+1)eAYDS)/AYD

VX{K) = [VXIK)®AYDL+VX(K+Ll)}oAYDUS)/ZAYD

[FlvY(K)evY(KeL)) 139,172,127

CUlrRel) = =CUu(ne])

[FIKR-KK)} 166,111,111

TR L,00390625-(AX-DL-DCC yee-AY(K)®e2) 138,138,866

TFlAY{K-1)+1.) 131,131,133

Culky)r = 0.

L) TJ 174

[FLAYS) 170,160,160

LU 161 KJ=2,K

TFICUiKY)Y) 161,162,161

CU 171 1Jd=2Kd,x

Cully) = CUullyel)

AY(LJ=-1) = AY (1Y)

yY(lJd-1} YY(lg)

vx(lJ-1) vx(ilJ)

CulK)y=y.

LGOI 163

cLNT i NUE

aklTe GUTPUT TaPe 64,715

s Tu 7

Hon

163 & = K-1



ANS = ANS-1.
KU = K¢l
a1 TE QUTPUT TAPE 6,1754KU
166 IH(VYIK)eVY{K=-1)) 16T4167,1063
167 AYD = AY(K)e¢AY(K-1)
AY(K) = SOURTF(.00390625-1AXx-0C-0CC Jou2)
VY({K) = =VYI(K)
GO TO 1le1l
140 Cutkel) = O.
168 AYD = AYIXK-1)-AY(K)
GU TO 169
170 IF(CUIK*LY) L1T74,4164,174
174 1HIVYLIK)eVY(K¢L)) 135,13%,136
135 AYU = AY({K)eAY(K+1)
VY(K) = =VYL{K)
137 AY(R) = SORTF(.OU)QObZS—(Ax-OC-DCC )oe2)
[t (AY(K)=AY(K+]}) 107,142,162
136 IFLVY(K)) 137,137,140
169 AYIK) = SOUKTF(.00390625-(AX-DC-DCC yee2)
IFLAY(K)-AY(K=-1)) 1l4l,106,1006
14l AYDL = AY(K-1)-AYI[K)
CUtR) = CUIK)Y®AYDL/AYD
AYUS = AYD-AYDL
VY(K)} = (VY(K)IAYDL*VY(K-l!-AYDS)/AYD
VXIK) = (VX{K)®AYDL+VX({K—1)®AYDS)/AYD

GO TU 138
142 CUlk+1l} = 0.
AY (K} = -1,
111 CONTINUE
RETURN
7 CONTINUE
175 FURMAT{20H TRAJCCTORIES FROUM o, 12,65H DOWN HAVE BEEN RENUMBERED
1 BY 1 LESS THAN THE PREVIUUS NUMBER. )

215 FORMAT({1HOD,20X,19H SOLUTIOUN IMPOSSIBLE/Z2LX,6H CORRCT)
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C MAIN CURE 4-TEST ON UPPER AND LOJWER BOUND FOR RHS

53
55
956
56

68

61

11

T4

15
72
57
59

58
52

91
90

100
101

l
2
3

l
2

COMMUN UsRH JT oKT o XToyLBeLAyXRyXEP)NUL ¢ XMP,VA,VB,V_,H,DC,0DCC,
NDB o X g NP LT ¢ NBLOCyYEP ¢ XWUMe A RXy JOT s NBHyNLCyNJSNRD,NDA,NAJ,
CUWAY ) AXsDX gDELY o VY 3 VX9 BHeLDoNTJ yNRL)KRLyCHUP4CHLW, MO, ICAL,
LCyEPS KBy VAT VBT, SIZE s RHUP»RHDUWN

ODIMENSION Ul1600) yKH{1600) 4JT(S510)4KT{150}XT{150),LB(98),LA{85),

XRCTI o XEPCT) o XMP L) o XWlT) 4 KB{L13),LCU35),CUL24),AY(22),
VX122),VY{22),LD1(28)

DIMENSIUN VAT(7),VvBT(7),514C1t7)

SX = 1.

IF{KRL-NRL*+1) 1,2,3

RHUP = RH(12)

GJd Ty 52

IFIRHEL12)-RHUP) 4,4,5

KHOOWN = RHUP

MU = -MD

RHUP = RH({12)

GO TO %2

RHUOWN = RH(12)

GO TU 52

IF(MU) 54,52,5)3

IFIRHUP-RHI(L12)) 56,455,555

IF{RH{L12)-RHDOWN) 61457,57

IFU(RHIL2)-RHDUWN) ¢« (RH({L12)-RHUJP)) H5T7,57,61

SX = SXeRX

00 68 J=1,1600

RH{J)=RH(J)eRX

wld TO 53

PUm = l./5X

CH = RH(12)eP0U~

ReAD DRUM 3,3,u

D3 71 J=1,1600

RHUJ) = 5 (ULJ)*RH(J) *PONR)

Kt = 1
JJ = NRL+]
KBlJJ) = 99

KBtJJdel ) = 99
wRlTe QUTPUT TAPE 6,100
IFIMU) 75,746,174
RHUP = CH

GL TO 72

RHOUWN = CH

My = 0

1IF(MUY) 58,52,57
RHUP = RHI(12)
O TO 52

RHOOWN = RH({12)

XTEL1) = «259RHDJIWN
XT{2) = .258KkAl12)
XTL3) = .25e#RkHUP

ARTTE OUTPUT TAPE 64101 XTUL)pXT(2),XT(3)

Im = NRL-KRL¢]

IFI(KBUIW)) 90,90,91

CALL TRIOUT

ML) = =-MU

KRL = KRL-1

CALL POUNGU2)

FURMAT(1lH RHzAVERAGE )

FORMAT(7H RHLIDAZF6.3,4H RH=F6.3,6H RHUP2F6,3)
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C PRINT-UUT RHS

31

29

35

36

131

129

135

136

172

101
102

1
2
3

1
2

SUBROUTINE TRIUOUT

COMMON U'RH'JI'KT'XT.LB.LA.XR'XEP'NULpXHP'VA'VB.VC.H'DC|DCC9
NDB.XN'NPXt'NBLUC.YtPgXUM.A'RKpJOT,NBH.NLC.NJS.NRD.NDA'NAJ'
CU.AY,AX'DX.OELVoVY'VXgBH'LU.NTJ.NRL9KRL.CHUP.CHLH.MO'ICALg
LC!EPSQKBQVATyVUI.S‘lEvKHUpvaHDUHN

DIMENSIUN U(lbOO).RH(IbOO).Jl(blO)'KTl150).XT(lSO).LB(Qal.LA(BS)-

XK(7|'KEP(7)pXMP(?)pXN(7)'K8(13)pLC(35)'CU(2“"AY(22)’
VX122),VY(22),L0(28)

Jy =1

IF(MU) 19291

DU 72 JL=1l NBLUC

JOB = LBlJBe2)-LBLIB+L)

wrlTe QUTPUT TAPE 6,101,408, JL

J =1

KG = LBLJB+])

KH = LB(JB+2)

00 29 K=KG,KH

XT{J) = +25¢RH(K)

JTLJ) = K-LB(JB)

J = J+l

Jos = JD0B-1

IFLJ-9) 29,31,31

wikITt UUTPUT TAPE 60102.‘J[(M)oM=1v81'(XT(M)'M=1v8)

J =1

IFLJLB) T72,72+29

CONTINuE

IF(J-2) 72435,35

DJ 36 K=J,8

JI(k}) = O

XT(K) = 0.

w I TE UUTPUT TAPE 6.102'(J!(H).Hzl,B),lxr(M)'Mtloﬂi

Ju = JBelé

RE TURN

REAL DRUM 3,3,U

DU 172 JL=1.N8L0C

Jouv=LB(JBe2)-LBliB+l)

wrlle OUTPUT TAPE 6,101,J0ByJL

J=1

Kub=LBLJB+1)

KH=LplJB+2)

DU 129 K=KG,KH

JT{J)2K-LB{JB)

XTUJ)=e1250(UIK)*RHIK))

J=J+l

Jhg=408-1

IF(J-9)129,131,131

a1l Te QUTPUT TAPE 6.[02.(JT(M).M=I'B)p(XT(M|gM=l'8)

J=1

IFLJUBILT241724129

CONTINUE

IF(J-21172,135,135

CO 136 K=J,8

JTIK)=0

ATIK)=0.

WwR1TE QUTPUT TAPE 64102, (JTIM) ,M=1,8),(XT(M)},M=1,8)
JB=uB+ 14

GO 10 3

FURMAT(IH 15,234 RH VALUES FROM REGION 12)
FORMAT(LIH Bl14,8F11.4)
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* UATA
12 200
1 CASE k-4

EMITTER POTENTIAL=1000.
ACCEL. POTENTIAL=-1000.
DECEL. PUTENTIAL=O.
CALCULATION OF LAPLACE AND POI1SSON
IS .40

SUPRESSIUN

Hz2.05% IN REGIONS

25

1

FACTOR
PHYSILAL END OF PRUBLEM [S AT 3.0
H=.025% IN REGIONS 2,4

4 99

vOLTS

1,3,5

VOLTS
vOLTS

000

20

U=0. I5 RIGHT HAND BUUNDARY CONUITION.

INITIAL INPUT
1
300 b 00
0 12 188
208 230 692
112 126 834
864 dub 1348
1368 1380 1545
10 210 199
1 Z il
693 B> 2
U 11 834
1256 2 1
12 | 16
19 1 12
l lo 12
2 1 22
Be854L-12 9.649¢t
1000. -1000.
1000. -1000.
100U . -1300.
1000. -1Gu0.
1000, -500.
1 -12 10 23
-1 2 -10 12
-1 23 -10 12
-33 1 L1 12
-1 2 =20 27
1 -22 20 213
1 =27 20 -2
1 -2z 20 23
1 -< -22 20
1 -2 =22 20
I - -22 23
3 -2 —-22 20
1 -2 =22 20
1 -2¢ 29 -2
1 -2 -22 20

121
1
12
23
44
99
l
713
1
928
1l
P4
i1
11
886
4

CLoOoLuecLcoecCecouooocee

70 65
208 0
o 21
864 11
0 21
1965 il
1 11
629 1
10 866
i 2
1327 1380
43 21
> 2
2 1
21 1
132.91 +0
100.
100.
130.
1UJ .
90
.U
e
.2
« 25
o5
« 00
.00
«+ 33333341
220134193
slbbbLLOT
« 2462736560
o l22722222
<doLboLeELT
«33333333
e 23734193

IS FROM RESISTANCE PAPCR

113 1566
160 139
9] o]
12 133
[¢] 0
12 lys
230 177
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APPENDIX D

ERRCR FUNCTION

The Orr analysis of the error function e wused for the criterion
of convergence of the Laplacian equation i1s presented in reference 5.
The formula for an error at the point N for a rectangular region shown
in sketch (k) is given by

Wl
m N N
ey & 2 e for m 2z C (D1)
N
s
r s
where r and s are defined in sketch (k)
Y
A rh
e
r TN

sh

e X
h by h mesh
spacing

(x)

Equation (D1) was used in the program reported herein as a criterion
for the convergence of the Laplacian equation with the values r and s
for each net as follows:

Net r S
I 8.5 S
1T 11.5 10
ITI 5.0 5
Iv 11.5 10
v 8.5 5
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Figure 4. - Variation of number of iterations required for

convergence of matrix of test region with estimated spec-
tral radius (see sketch (h)).
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Figure 5. - Comparison of error limits and execution time with
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with 1000-volt potential in test region.
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Error limits, percent
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Figure 6. - Variation of error limits and execution
time with potential difference for plane-diode case
in test region.
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NASA-Langley, 1962 E-1665















